
LAGraph

Tim Davis, Tim Mattson, Scott McMillan, Jim Kitchen, Erik Welch

Aug 29, 2023

CONTENTS:

1 Introduction 3

2 LAGraph context and error handling 5
2.1 LAGraph Context Functions . 5
2.2 Error handling . 7

3 The Graph Object 13
3.1 Basic Graph Functions . 15

4 Algorithms 21
4.1 Basic . 21
4.2 Advanced . 22

5 Utility Functions 29
5.1 Input/Output Functions . 29
5.2 Matrix Structure Functions . 32
5.3 Matrix Comparison Functions . 33
5.4 Introspecting Types . 35
5.5 Printing . 36
5.6 Pre-defined semirings . 38

6 Experimental Algorithms 41

7 Installation 43

8 Acknowledgements 45

9 References 47

10 Example Usage 49

Index 51

i

ii

LAGraph

The LAGraph library is a collection of high level graph algorithms based on the GraphBLAS C API. These algorithms
construct graph algorithms expressed in the language of linear algebra. Graphs are expressed as matrices, and the
operations over these matrices are generalized through the use of a semiring algebraic structure.

LAGraph is available at https://github.com/GraphBLAS/LAGraph. LAGraph requires SuiteSparse:GraphBLAS, avail-
able at https://github.com/DrTimothyAldenDavis/GraphBLAS.

CONTENTS: 1

https://github.com/GraphBLAS/LAGraph
https://github.com/DrTimothyAldenDavis/GraphBLAS

LAGraph

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

A graph is a set of vertices and a set of edges between them. This pair of sets leads directly to the familiar picture of
a graph as a set of dots connected by arcs (an undirected graphs) or arrows (a directed graph). You can also represent
a graph in terms of matrices. Usually, this is done with an adjacency matrix where the rows and columns correspond
to the vertices and the non-empty elements represent the edges between vertices. Since fully connected graphs (i.e.,
every vertex is connected to every other vertex) are rare, matrices used for Graphs are typically sparse (most elements
are empty so it makes sense to only store the non-empty elements).

Representing a graph as a sparse matrix results in graph algorithms expressed in terms of linear algebra. For example,
if a vector represents a set of vertices, multiplication of that vector by an adjacency matrix returns a vector of the
neighbors of those vertices. A sequence of multiplications traverses the graph in a breadth first manner.

To cover the full range of graph algorithms, one additional ingredient is needed. We are used to thinking of matrix
operations over real numbers: multiply pairs of matrix elements and then combine the resulting products through
addition. There are times, however, when those operations do not provide the functionality needed by an algorithm.
For example, it may be better to combine elements by only keeping the minimum value. The elements of the matrices
may be Boolean values or integers or even a user-defined type. If the goal is to cover the full range of graph algorithms,
therefore, we need a way to generalize the type and the operators to use instead of the usual addition and multiplication.

We do this through an algebraic semiring. This algebraic structure consists of (1) an operator corresponding to addition,
(2) the identity of that operator, (3) an operator corresponding to multiplication, and (4) the identity of that operator.
We are all familiar with the semiring used with real numbers consisting of (+,0,*,1). A common semiring in graph
algorithms is the so-called tropical semiring consisting of (min,infinity,+,0). This is used in shortest path algorithms.
These semirings give us a mathematically rigorous way to modify the operators used in our graph algorithms.

If you work with linear algebra, you most likely know about the Basic Linear Algebra subprograms or BLAS. Introduced
in the 70’s and 80’s, the BLAS had a huge impact on the practice of linear algebra. By designing linear algebra in
terms of the BLAS, an algorithm can be expressed at a high level leaving specialization to the low level details of a
particular hardware platform to the BLAS. So if you want to use Linear Algebra for Graph Algorithms, it stands to
reason that you need the Basic Linear Algebra Subprograms for Graph Algorithms. We call these the GraphBLAS
(www.graphblas.org).

The GraphBLAS define opaque types for a matrix and a vector objects. Since these objects are opaque, an implemen-
tation has the freedom to specialize the data structures as needed to optimize the software for a particular platform.
The GraphBLAS are great for people interested in sparse linear algebra and designing their own graph algorithms. The
GraphBLAS library, however, does not include any graph algorithms. The GraphBLAS provide a software framework
for constructing graph algorithms, but it doesn’t provide any actual Graph Algorithms. Since most people working with
graphs use algorithms but don’t develop them “from scratch”, the GraphBLAS are not really useful to most people.

Hence, there is a need for a library of Graph Algorithms implemented on top of the GraphBLAS. We have created this
library. It is called LAGraph. The LAGraph library is a library of functions that implement the most common high level
graph algorithms used in graph analytics. It includes types, utility functions and everything needed to incorporate graph
algorithms into your analytics work flows. The library uses the GraphBLAS objects (e.g., GrB_matrix and GrB_vector)
inside the objects defined by LAGraph. Consequently, GraphBLAS and LAGraph functions can be freely mixed inside
a single program.

3

https://www.graphblas.org

LAGraph

A graph in LAGraph uses the LAGraph_Graph data type. Unlike the GrB_matrix object, an LAGraph_Graph object
is not opaque. The elements of the data structure are available to the user of the LAGraph library. The data associated
with and LAGraph_Graph is represented by an GrB_matrix. The data structure includes information about the graph
and key properties of the graph. For example, many algorithms require not only the matrix representing a graph, but
also its transpose. These (and other) properties can be stored within the LAGraph_Graph. Storage of properties such
as the transpose of a matrix requires additional storage, but the performance impact can more than compensate for the
cost associated with that extra memory.

The algorithms within LAGraph roughly break down into two categories: Basic (LAGraph_*) and advanced (LAGr_*).
The idea is that users who are not familiar with the ways graph algorithms are implemented and just want to apply an
algorithm to their graphs, would use the Basic interface. For advanced users who are comfortable working with key
aspects of the algorithms they are working with might see a significant performance benefit from working with the
advanced algorithm.

For example, the basic and advanced algorithms deal with the properties of an LAGraph graph differently. The basic
algorithm assumes the user will not set-up the LAGraph_Graph with the properties needed by an algorithm. Such
properties will be computed as needed. An advanced user, however, may know that the string of operations in a
workflow all requires a subset of key properties. By computing them in advanced and storing them with the LAGraph
graph, the workflow can run much faster since it won’t need to, for example, rearrange a matrix into its transpose for
each algorithm in a workflow.

4 Chapter 1. Introduction

CHAPTER

TWO

LAGRAPH CONTEXT AND ERROR HANDLING

The sections below describe a set of functions that manage the LAGraph context within a user application, and discuss
how errors are handled.

2.1 LAGraph Context Functions

int LAGraph_Init(char *msg)
LAGraph_Init: initializes GraphBLAS and LAGraph. This method must be called before calling any other GrB*
or LAGraph* method. It initializes GraphBLAS with GrB_init and then performs LAGraph-specific initializa-
tions. In particular, the LAGraph semirings listed below are created. GrB_init can also safely be called before
calling LAGr_Init or LAGraph_Init.

Parameters msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_INVALID_VALUE – if LAGraph_Init or LAGr_Init has already been called by the
user application.

int LAGr_Init(GrB_Mode mode, void *(*user_malloc_function)(size_t), void *(*user_calloc_function)(size_t,
size_t), void *(*user_realloc_function)(void*, size_t), void (*user_free_function)(void*), char *msg)

LAGr_Init: initializes GraphBLAS and LAGraph. LAGr_Init is identical to LAGraph_Init , except that it al-
lows the user application to specify the GraphBLAS mode. It also provides four memory management func-
tions, replacing the standard malloc, calloc, realloc, and free. The functions user_malloc_function,
user_calloc_function, user_realloc_function, and user_free_function have the same signature
as the ANSI C malloc, calloc, realloc, and free functions, respectively. Only user_malloc_function and
user_free_function are required. user_calloc_function may be NULL, in which case LAGraph_Calloc
uses LAGraph_Malloc and memset. Likewise, user_realloc_function may be NULL, in which case
LAGraph_Realloc uses LAGraph_Malloc, memcpy, and LAGraph_Free.

Parameters

• mode – [in] the mode for GrB_Init

• user_malloc_function – [in] pointer to a malloc function

• user_calloc_function – [in] pointer to a calloc function, or NULL

• user_realloc_function – [in] pointer to a realalloc function, or NULL

• user_free_function – [in] pointer to a free function

• msg – [inout] any error messages.

5

LAGraph

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_INVALID_VALUE – if LAGraph_Init or LAGr_Init has already been called by the
user application.

• GrB_NULL_POINTER – if user_malloc_function or user_free_function are NULL.

int LAGraph_Finalize(char *msg)
LAGraph_Finalize: finish LAGraph and GraphBLAS. Must be called as the last LAGraph method. It calls
GrB_finalize and frees any LAGraph objects created by LAGraph_Init or LAGr_Init . After calling this method,
no LAGraph or GraphBLAS methods may be used.

Parameters msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns GrB_SUCCESS – if successful.

int LAGraph_Version(int version_number[3], char *version_date, char *msg)
LAGraph_Version: determines the version of LAGraph. The version number and date can also be obtained via
compile-time constants from LAGraph.h. However, it is possible to compile a user application that #includes
one version of LAGraph.h and then links with another version of the LAGraph library later on, so the version
number and date may differ from the compile-time constants.

The LAGraph_Version method allows the library itself to be queried, after it is linked in with the user application.

The version_number array is set to LAGRAPH_VERSION_MAJOR, LAGRAPH_VERSION_MINOR, and LA-
GRAPH_VERSION_UPDATE, in that order. The LAGRAPH_DATE string is copied into the user-provided
version_date string, and is null-terminated.

Parameters

• version_number – [out] an array of size 3; with the major, minor, and update versions of
LAGraph, in that order.

• version_date – [out] an array of size >= LAGraph_MSG_LEN, returned with the date of
this version of LAGraph.

• msg – [inout] any error messages.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if version_number or version_date are NULL.

int LAGraph_GetNumThreads(int *nthreads_outer, int *nthreads_inner, char *msg)
LAGraph_GetNumThreads determines the current number of OpenMP threads that can be used. See LA-
Graph_SetNumThreads for a description of nthreads_outer and nthreads_inner.

Parameters

• nthreads_outer – [out] number of threads for outer region.

• nthreads_inner – [out] number of threads for inner region, or for the underlying Graph-
BLAS library.

• msg – [inout] any error messages.

Returns

• GrB_SUCCESS – if successful.

6 Chapter 2. LAGraph context and error handling

LAGraph

• GrB_NULL_POINTER – if nthreads_outer or nthreads_inner are NULL.

int LAGraph_SetNumThreads(int nthreads_outer, int nthreads_inner, char *msg)
LAGraph_SetNumThreads sets the current number of OpenMP threads that can be used by LAGraph and Graph-
BLAS. Two thread counts can be controlled:

Parameters

• nthreads_outer – [in] number of threads to be used in outer regions of a nested
parallel construct assuming that nthreads_inner is used in the inner region. The to-
tal number of threads used for an entire nested region in LAGraph is given by
nthreads_outer*nthreads_inner. This product is also the # of threads that a flat parallel region
in LAGraph may use.

• nthreads_inner – [in] number of threads to be used in an inner region of a nested parallel
construct, or for the # of threads to be used in each call to the underlying GraphBLAS library.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns GrB_SUCCESS – if successful.

2.2 Error handling

LAGRAPH_RETURN_VALUES
Nearly all LAGraph methods return an int to denote their status, and have a final string (msg) that captures any
error messages.

LAGraph has a single function that does not follow this rule. LAGraph_WallClockTime has no error handling
mechanism (it returns a value of type double, and does not have an final msg string parameter.

All other methods return an int to denote their status: zero if they are successful (which is the value of
GrB_SUCCESS), negative on error, or positive for an informational value (such as GrB_NO_VALUE). Inte-
gers in the range -999 to 999 are reserved for GraphBLAS GrB_Info return values:

successful results:

• GrB_SUCCESS = 0 // all is well

• GrB_NO_VALUE = 1 // A(i,j) requested but not there

errors:

• GrB_UNINITIALIZED_OBJECT = -1 // object has not been initialized

• GrB_NULL_POINTER = -2 // input pointer is NULL

• GrB_INVALID_VALUE = -3 // generic error; some value is bad

• GrB_INVALID_INDEX = -4 // row or column index is out of bounds

• GrB_DOMAIN_MISMATCH = -5 // object domains are not compatible

• GrB_DIMENSION_MISMATCH = -6 // matrix dimensions do not match

• GrB_OUTPUT_NOT_EMPTY = -7 // output matrix already has values

• GrB_NOT_IMPLEMENTED = -8 // method not implemented

2.2. Error handling 7

LAGraph

• GrB_PANIC = -101 // unknown error

• GrB_OUT_OF_MEMORY = -102 // out of memory

• GrB_INSUFFICIENT_SPACE = -103, // output array not large enough

• GrB_INVALID_OBJECT = -104 // object is corrupted

• GrB_INDEX_OUT_OF_BOUNDS = -105 // row or col index out of bounds

• GrB_EMPTY_OBJECT = -106 // an object does not contain a value

LAGraph returns any errors it receives from GraphBLAS, and also uses the GrB_* error codes in these cases:

• GrB_INVALID_INDEX: if a source node id is out of range

• GrB_INVALID_VALUE: if an enum to select an option is out of range

• GrB_NOT_IMPLEMENTED: if a type is not supported, or when SuiteSparse GraphBLAS is required.

Summary of return values for all LAGraph functions that return int:

• GrB_SUCCESS if successful

• a negative GrB_Info value on error (in range -999 to -1)

• a positive GrB_Info value if successful but with extra information (in range 1 to 999)

• -1999 to -1000: a common LAGraph-specific error, see list above

• 1000 to 1999: if successful, with extra LAGraph-specific information

• <= -2000: an LAGraph error specific to a particular LAGraph method

• >= 2000: an LAGraph warning specific to a particular LAGraph method

Many LAGraph methods share common error cases, described below. These return values are in the range -1000
to -1999. Return values of -2000 or greater may be used by specific LAGraph methods, which denote errors not
in the following list:

• LAGRAPH_INVALID_GRAPH (-1000): The input graph is invalid; the details are given in the error
msg string returned by the method.

• LAGRAPH_SYMMETRIC_STRUCTURE_REQUIRED (-1001): The method requires an undirected
graph, or a directed graph with an adjacency matrix that is known to have a symmetric structure.
LAGraph_Cached_IsSymmetricStructure can be used to determine this cached property.

• LAGRAPH_IO_ERROR (-1002): A file input or output method failed, or an input file has an incorrect
format that cannot be parsed.

• LAGRAPH_NOT_CACHED (-1003): Some methods require one or more cached properties to be
computed before calling them (AT, out_degree, or in_degree. Use LAGraph_Cached_AT, LA-
Graph_Cached_OutDegree, and/or LAGraph_Cached_InDegree to compute them.

• LAGRAPH_NO_SELF_EDGES_ALLOWED (-1004): Some methods requires that the graph have no
self edges, which correspond to the entries on the diagonal of the adjacency matrix. If the G-
>nself_edges cached property is nonzero or unknown, this error condition is returned. Use LA-
Graph_Cached_NSelfEdges to compute G->nself_edges, or LAGraph_DeleteSelfEdges to remove all
diagonal entries from G->A.

• LAGRAPH_CONVERGENCE_FAILURE (-1005): An iterative process failed to converge to a good
solution.

• LAGRAPH_CACHE_NOT_NEEDED (1000): This is a warning, not an error. It is returned by LA-
Graph_Cached_* methods when asked to compute cached properties that are not needed. These in-
clude G->AT and G->in_degree for an undirected graph.

8 Chapter 2. LAGraph context and error handling

LAGraph

LAGRAPH_MSG_LEN
All LAGraph functions (except for LAGraph_WallClockTime) have a final msg parameter that is a pointer to a
user-allocated string in which an algorithm-specific error message can be returned. If msg is NULL, no error
message is returned. This is not itself an error condition, it just indicates that the caller does not need the message
returned. If the message string is provided but no error occurs, an empty string is returned.

LAGRAPH_MSG_LEN is the minimum required length of a message string.

For example, the following call computes the breadth-first-search of an LAGraph_Graph G, starting at a given
source node. It returns a status of zero if it succeeds and a negative value on failure.

GrB_Vector level, parent ;
char msg [LAGRAPH_MSG_LEN] ;
int status = LAGr_BreadthFirstSearch (&level, &parent, G, src, msg) ;
if (status < 0)
{

printf ("status %d, error: %s\n", status, msg) ;
... take corrective action here ...

}

Error handling is simplified by the LAGRAPH_TRY / LAGRAPH_CATCH mechanism described below. For
example, assuming the user application #defines a single LAGRAPH_CATCH mechanism for all error handling,
the above example would become:

GrB_Vector level, parent ;
char msg [LAGRAPH_MSG_LEN] ;
#define LAGRAPH_CATCH(status) \
{ \

printf ("status %d, error: %s\n", status, msg) ; \
... take corrective action here ... \

}
...
LAGRAPH_TRY (LAGr_BreadthFirstSearch (&level, &parent, G, src, msg)) ;

The advantage of the second use case is that the error-handling block of code needs to be written only once.

LAGRAPH_TRY(LAGraph_method)
LAGRAPH_TRY: try an LAGraph method and check for errors.

In a robust application, the return values from each call to LAGraph and GraphBLAS should be checked, and
corrective action should be taken if an error occurs. The LAGRAPH_TRY and GRB_TRY macros assist in this
effort.

LAGraph and GraphBLAS are written in C, and so they cannot rely on the try/catch mechanism of C++.
To accomplish a similar goal, each LAGraph file must #define its own file-specific macro called LA-
GRAPH_CATCH. The typical usage of macro is to free any temporary matrices/vectors or workspace when
an error occurs, and then “throw” the error by returning to the caller. A user application may also #define
LAGRAPH_CATCH and use these macros. The LAGRAPH_CATCH macro takes a single argument, which is the
return value from an LAGraph method.

A typical example of a user function that calls LAGraph might #define LAGRAPH_CATCH as follows. Suppose
workvector is a GrB_vector used for computations internal to the mybfs function, and W is a (double *) space
created by malloc.

// an example user-defined LAGRAPH_CATCH macro, which prints the error
// then frees any workspace or results, and returns to the caller:

(continues on next page)

2.2. Error handling 9

LAGraph

(continued from previous page)

#define LAGRAPH_CATCH(status) \
{ \

printf ("LAGraph error: (%d): file: %s, line: %d\n%s\n", \
status, __FILE__, __LINE__, msg) ; \

GrB_free (*parent) ; \
GrB_free (workvector) ; \
LAGraph_Free ((void **) &W, NULL) ; \
return (status) ; \

}

// an example user function that uses LAGRAPH_TRY / LAGRAPH_CATCH
int mybfs (LAGraph_Graph G, GrB_Vector *parent, int64_t src)
{

GrB_Vector workvector = NULL ;
double *W = NULL ;
char msg [LAGRAPH_MSG_LEN] ;
(*parent) = NULL ;
LAGRAPH_TRY (LAGr_BreadthFirstSearch (NULL, parent, G, src, true,

msg)) ;
// ...
return (GrB_SUCCESS) ;

}

LAGRAPH_TRY is defined as follows:

#define LAGRAPH_TRY(LAGraph_method) \
{ \

int LG_status = LAGraph_method ; \
if (LG_status < GrB_SUCCESS) \
{ \

LAGRAPH_CATCH (LG_status) ; \
} \

}

GRB_TRY(GrB_method)
GRB_TRY: LAGraph provides a similar functionality as LAGRAPH_TRY for calling GraphBLAS methods, with
the GRB_TRY macro. GraphBLAS returns info = 0 (GrB_SUCCESS) or 1 (GrB_NO_VALUE) on success, and
a value < 0 on failure. The user application must #define GRB_CATCH to use GRB_TRY.

GraphBLAS and LAGraph both use the convention that negative values are errors, and the LAGraph_status is
a superset of the GrB_Info enum. As a result, the user can define LAGRAPH_CATCH and GRB_CATCH as
the same operation. The main difference between the two would be the error message string. For LAGraph, the
string is the last parameter, and LAGRAPH_CATCH can optionally print it out. For GraphBLAS, the GrB_error
mechanism can return a string.

GRB_TRY is defined as follows:

#define GRB_TRY(GrB_method) \
{ \

GrB_Info LG_GrB_Info = GrB_method ; \
if (LG_GrB_Info < GrB_SUCCESS) \
{ \

GRB_CATCH (LG_GrB_Info) ; \
(continues on next page)

10 Chapter 2. LAGraph context and error handling

LAGraph

(continued from previous page)

} \
}

2.2. Error handling 11

LAGraph

12 Chapter 2. LAGraph context and error handling

CHAPTER

THREE

THE GRAPH OBJECT

The fundamental object in LAGraph is the LAGraph_Graph.

typedef struct LAGraph_Graph_struct *LAGraph_Graph

struct LAGraph_Graph_struct
LAGraph_Graph: a representation of a graph.

The LAGraph_Graph G contains a GrB_Matrix G->A as its primary component. For graphs represented with
adjacency matrices, A(i,j) denotes the edge (i,j). Unlike GrB_* objects in GraphBLAS, the LAGraph_Graph
data structure is not opaque. User applications have full access to its contents.

An LAGraph_Graph G contains two kinds of components:

a. Primary components of the graph, which fully define the graph.

b. Cached properties of the graph, which can be recreated any time.

Primary Components

GrB_Matrix A
the adjacency matrix of the graph

LAGraph_Kind kind
the kind of graph

Cached Properties

All of these components may be deleted or set to ‘unknown’ at any time. For example, if AT is NULL, then
the transpose of A has not been computed. A scalar cached property of type LAGraph_Boolean would be set to
LAGRAPH_UNKNOWN to denote that its value is unknown.

If present, the cached properties must be valid and accurate. If the graph changes, these cached properties can
either be recomputed or deleted to denote the fact that they are unknown. This choice is up to individual LAGraph
methods and utilities.

LAGraph methods can set non-scalar cached properties only if they are constructing the graph. They cannot
modify them or create them if the graph is declared as a read-only object in the parameter list of the method.

GrB_Matrix AT
AT = A’, the transpose of A, with the same type.

13

LAGraph

GrB_Vector out_degree
a GrB_INT64 vector of length m, if A is m-by-n. where out_degree(i) is the number of entries in A(i,:). If
out_degree is sparse and the entry out_degree(i) is not present, then it is assumed to be zero.

GrB_Vector in_degree
a GrB_INT64 vector of length n, if A is m-by-n. where in_degree(j) is the number of entries in A(:,j). If
in_degree is sparse and the entry in_degree(j) is not present, then it is assumed to be zero. If A is known to
have a symmetric structure, the convention is that the degree is held in G->out_degree, and in G->in_degree
is left as NULL.

LAGraph_Boolean is_symmetric_structure
For an undirected graph, this cached property will always be implicitly true and can be ignored. The ma-
trix A for a directed weighted graph will typically be unsymmetric, but might have a symmetric structure.
In that case, this scalar cached property can be set to true. By default, this cached property is set to LA-
GRAPH_UNKNOWN.

int64_t nself_edges
number of entries on the diagonal of A, or LAGRAPH_UNKNOWN if unknown. For the adjacency matrix
of a directed or undirected graph, this is the number of self-edges in the graph.

GrB_Scalar emin
minimum edge weight: value, lower bound, or unknown

LAGraph_State emin_state

• VALUE: emin is equal to the smallest entry, min(G->A)

• BOUND: emin <= min(G->A)

• UNKNOWN: emin is unknown

GrB_Scalar emax
maximum edge weight: value, upper bound, or unknown

LAGraph_State emax_state

• VALUE: emax is equal to the largest entry, max(G->A)

• BOUND: emax >= max(G->A)

• UNKNOWN: emax is unknown

enum LAGraph_Boolean
LAGraph_Boolean: a boolean value (true or false) or unknown (-1).

Values:

enumerator LAGraph_FALSE
the Boolean value is known to be false.

enumerator LAGraph_TRUE
the Boolean value is known to be true.

enumerator LAGraph_BOOLEAN_UNKNOWN
Boolean value is unknown.

14 Chapter 3. The Graph Object

LAGraph

enum LAGraph_State
LAGraph_State describes the status of a cached property of a graph. If the cached property is computed in
floating-point arithmetic, it may have been computed with roundoff error, but it may still be declared as “value”
if the roundoff error is expected to be small, or if the cached property was computed as carefully as possible
(to within reasonable roundoff error). The “bound” state indicates that the cached property is an upper or lower
bound, depending on the particular cached property. If computed in floating-point arithmetic, an “upper bound”
cached property may be actually slightly lower than the actual upper bound, because of floating-point roundoff.

Values:

enumerator LAGraph_VALUE
cached property is a known value.

enumerator LAGraph_BOUND
cached property is a bound. The bound is upper or lower, depending on the particular cached property.

enumerator LAGraph_STATE_UNKNOWN
the property is unknown.

enum LAGraph_Kind
LAGraph_Kind: the kind of a graph. Currently, only two types of graphs are supported: undirected graphs and
directed graphs. Edge weights are assumed to be present. Unweighted graphs can be represented by setting all
entries present in the sparsity structure to the same value, typically 1. Additional types of graphs will be added
in the future.

Values:

enumerator LAGraph_ADJACENCY_UNDIRECTED
undirected graph. G->A is square and symmetric; both upper and lower triangular parts are present. A(i,j)
is the edge (i,j). Results are undefined if A is unsymmetric.

enumerator LAGraph_ADJACENCY_DIRECTED
G->A is square; A(i,j) is the edge (i,j).

directed graph.

enumerator LAGraph_KIND_UNKNOWN
unknown kind of graph (-1).

3.1 Basic Graph Functions

int LAGraph_New(LAGraph_Graph *G, GrB_Matrix *A, LAGraph_Kind kind, char *msg)
LAGraph_New: creates a new graph G. The cached properties G->AT, G->out_degree, and G->in_degree are
set to NULL, and scalar cached properties are set to LAGRAPH_UNKNOWN.

Parameters

• G – [out] handle to the newly created graph, as &G.

• A – [inout] adjacency matrix. A is moved into G as G->A, and A itself is set to NULL to
denote that is now a part of G. That is, { G->A = A ; A = NULL ; } is performed. When G
is deleted, G->A is freed. If A is NULL, the graph is invalid until G->A is set.

3.1. Basic Graph Functions 15

LAGraph

• kind – [in] the kind of graph to create. This may be LAGRAPH_UNKNOWN, which must
then be revised later before the graph can be used.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G is null.

int LAGraph_Delete(LAGraph_Graph *G, char *msg)
LAGraph_Delete: frees a graph G. The adjacency matrix G->A and the cached properties G->AT, G-
>out_degree, and G->in_degree are all freed.

Parameters

• G – [inout] handle to the graph to be free. *G is NULL on output. To keep G->A while
deleting the graph G, use: { A = G->A ; G->A = NULL ; LAGraph_Delete (&G, msg) ; }

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns GrB_SUCCESS – if successful.

int LAGraph_DeleteCached(LAGraph_Graph G, char *msg)
LAGraph_DeleteCached: frees all cached properies of a graph G. The graph is still valid. This method should be
used if G->A changes, since such changes will normally invalidate G->AT, G->out_degree, and/or G->in_degree.

Parameters

• G – [inout] handle to the graph to modified. The graph G remains valid on output, but with
all cached properties freed. G may be NULL, in which case nothing is done.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns GrB_SUCCESS – if successful.

int LAGraph_Cached_AT(LAGraph_Graph G, char *msg)
LAGraph_Cached_AT: constructs G->AT, the transpose of G->A. This matrix is required by some of the al-
gorithms. Basic algorithms may construct G->AT if they require it. The matrix G->AT is then available for
subsequent use. If G->A changes, G->AT should be freed and recomputed. If G->AT already exists, it is left
unchanged (even if it is not equal to the transpose of G->A). As a result, if G->A changes, G->AT should be
explictly freed.

Parameters

• G – [inout] graph for which G->AT is computed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_CACHE_NOT_NEEDED – if G->kind is LA-
Graph_ADJACENCY_UNDIRECTED.

16 Chapter 3. The Graph Object

LAGraph

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_Cached_IsSymmetricStructure(LAGraph_Graph G, char *msg)
LAGraph_Cached_IsSymmetricStructure: determines if the sparsity structure of G->A is symmetric (ignoring
its values). If G->kind denotes that the graph is undirected, this cached property is implicitly true (and not
checked). Otherwise, this method determines if the structure of G->A for a directed graph G has a symmetric
sparsity structure. No work is performed if the cached property is already known.

Parameters

• G – [inout] graph for which G->is_symmetric_structure is computed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_Cached_OutDegree(LAGraph_Graph G, char *msg)
LAGraph_Cached_OutDegree: computes G->out_degree. No work is performed if it already exists in G.

Parameters

• G – [inout] graph for which G->out_degree is computed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_Cached_InDegree(LAGraph_Graph G, char *msg)
LAGraph_Cached_InDegree computes G->in_degree. No work is performed if it already exists in G.
If G is undirected, G->in_degree is never computed and remains NULL (the method returns LA-
GRAPH_CACHE_NOT_NEEDED). No work is performed if it is already exists in G.

Performance note: for SuiteSparse:GraphBLAS, if G->A is held by row (the default format), then comput-
ing G->in_degree is fastest if G->AT is known. If G->AT will be needed anyway, compute it first with LA-
Graph_Cached_AT, and then call LAGraph_Cached_Indegree. This is optional; if G->AT is not known, then
G->in_degree is computed from G->A instead.

Parameters

• G – [inout] graph for which G->in_degree is computed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

3.1. Basic Graph Functions 17

LAGraph

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_CACHE_NOT_NEEDED – if G->kind is LA-
Graph_ADJACENCY_UNDIRECTED.

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_Cached_NSelfEdges(LAGraph_Graph G, char *msg)
LAGraph_Cached_NSelfEdges: computes G->nself_edges, the number of diagonal entries that appear in the
G->A matrix. For an undirected or directed graph with an adjacency matrix G->A, these are the number of
self-edges in G. No work is performed it is already computed.

Parameters

• G – [inout] graph for which G->nself_edges is computed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_Cached_EMin(LAGraph_Graph G, char *msg)
LAGraph_Cached_EMin: computes the G->emin, the smallest entry in G->A. Not computed if G->emin already
exists.

Parameters

• G – [inout] graph for which G->emin is computed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NOT_IMPLEMENTED – if G does not have a built-in real type: GrB_(BOOL, INT8,
INT16, INT32, INT64, UINT8, UINT16, UINT32, UINT64, FP32, OR FP64).

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_Cached_EMax(LAGraph_Graph G, char *msg)
LAGraph_Cached_EMax: computes the G->emax, the largest entry in G->A. Not computed if G->emax already
exists.

Parameters

• G – [inout] graph for which G->emax is computed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

18 Chapter 3. The Graph Object

LAGraph

• GrB_SUCCESS – if successful.

• GrB_NOT_IMPLEMENTED – if G does not have a built-in real type: GrB_(BOOL, INT8,
INT16, INT32, INT64, UINT8, UINT16, UINT32, UINT64, FP32, OR FP64).

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_DeleteSelfEdges(LAGraph_Graph G, char *msg)
LAGraph_DeleteSelfEdges: removes any diagonal entries from G->A. Most cached properties are cleared or set
to LAGRAPH_UNKNOWN. G->nself_edges is set to zero, and G->is_symmetric_structure is left unchanged.

Parameters

• G – [inout] graph for which G->A is modified.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (G->A missing, or G->kind not a recog-
nized kind).

int LAGraph_CheckGraph(LAGraph_Graph G, char *msg)
LAGraph_CheckGraph: determines if a graph is valid. Only basic checks are performed on the cached properties,
taking O(1) time.

Parameters

• G – [in] graph to check.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G is NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid: G->A missing, G->kind not a recognized
kind, G->AT present but has the wrong dimensions or its type does not match G->A, G-
>in_degree/out_degree present but with the wrong dimension or type (in/out_degree must
be GrB_INT64).

3.1. Basic Graph Functions 19

LAGraph

20 Chapter 3. The Graph Object

CHAPTER

FOUR

ALGORITHMS

Algorithms come in two flavors: Basic and Advanced.

4.1 Basic

Basic algorithm are meant to be easy to use. A single basic algorithm may encompass many underlying Advanced
algorithms, each with various parameters that may be controlled. For the Basic API, these parameters are determined
automatically. Cached graph properties may be determined, and as a result, the graph G is both an input and an output
of these methods, since they may be modified.

LAGraph Basic algorithms are named with the LAGraph_* prefix.

int LAGraph_TriangleCount(uint64_t *ntriangles, LAGraph_Graph G, char *msg)
LAGraph_TriangleCount: count the triangles in a graph. This is a Basic algorithm (G->nself_edges, G-
>out_degree, G->is_symmetric_structure are computed, if not present).

Parameters

• ntriangles – [out] the number of triangles in G.

• G – [inout] the graph, which must by undirected, or directed but with a symmetric structure.
No self loops can be present.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G or ntriangles are NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (LAGraph_CheckGraph failed).

• LAGRAPH_NO_SELF_EDGES_ALLOWED – if G has any self-edges.

• LAGRAPH_SYMMETRIC_STRUCTURE_REQUIRED – if G is directed with an un-
symmetric G->A matrix.

21

LAGraph

4.2 Advanced

The Advanced algorithms require the caller to select the algorithm and choose any parameter settings. G is not modified,
and so it is an input-only parameter to these methods. If an Advanced algorithm requires a cached graph property to
be computed, it must be computed prior to calling the Advanced method.

Advanced algorithms are named with the LAGr_* prefix, to distinguish them from Basic algorithms.

int LAGr_SortByDegree(int64_t **P, const LAGraph_Graph G, bool byout, bool ascending, char *msg)
LAGr_SortByDegree sorts the nodes of a graph by their out or in degrees. The graph G->A itself is not changed.
Refer to LAGr_TriangleCount for an example of how to permute G->A after calling this function. The output &P
must be freed by LAGraph_Free. This method requires G->out_degree or G->in_degree to already be computed.

Parameters

• P – [out] permutation of the integers 0..n-1.

• G – [in] graph of n nodes.

• byout – [in] if true, sort by out-degree, else sort by in-degree.

• ascending – [in] if true, sort in ascending order, else descending.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_NULL_POINTER – if P or G are NULL.

• LAGRAPH_NOT_CACHED – if G->in_degree or G->out_degree is not computed
(whichever one is required).

• LAGRAPH_INVALID_GRAPH – if G is invalid (LAGraph_CheckGraph failed).

int LAGr_SampleDegree(double *sample_mean, double *sample_median, const LAGraph_Graph G, bool byout,
int64_t nsamples, uint64_t seed, char *msg)

LAGr_SampleDegree computes an estimate of the median and mean of the out or in degree, by randomly sam-
pling the G->out_degree or G->in_degree vector. This method requires G->out_degree or G->in_degree to
already be computed.

Parameters

• sample_mean – [out] sampled mean of the degree.

• sample_median – [out] sampled median of the degree.

• G – [in] graph to sample.

• byout – [in] if true, sample out-degree, else sample in-degree.

• nsamples – [in] number of samples to take.

• seed – [in] random number seed.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_NULL_POINTER – if sample_mean, sample_median, or G are NULL.

• LAGRAPH_NOT_CACHED – if G->in_degree or G->out_degree is not computed
(whichever one is required).

22 Chapter 4. Algorithms

LAGraph

• LAGRAPH_INVALID_GRAPH – if G is invalid (LAGraph_CheckGraph failed).

int LAGr_BreadthFirstSearch(GrB_Vector *level, GrB_Vector *parent, const LAGraph_Graph G, GrB_Index
src, char *msg)

LAGr_BreadthFirstSearch: breadth-first search of a graph, computing the breadth-first-search tree and/or the
level of the nodes encountered. This is an Advanced algorithm. G->AT and G->out_degree are required to use
the fastest push/pull method when using SuiteSparse:GraphBLAS. If these cached properties are not present, or
if a vanilla GraphBLAS library is being used, then a push-only method is used (which can be slower). G is not
modified; that is, G->AT and G->out_degree are not computed if not already cached.

Parameters

• level – [out] If non-NULL on input, on successful return, it contains the levels of each node
reached. The src node is assigned level 0. If a node i is not reached, level(i) is not present.
The level vector is not computed if NULL.

• parent – [out] If non-NULL on input, on successful return, it contains parent node IDs for
each node reached, where parent(i) is the node ID of the parent of node i. The src node will
have itself as its parent. If a node i is not reached, parent(i) is not present. The parent vector
is not computed if NULL.

• G – [in] The graph, directed or undirected.

• src – [in] The index of the src node (0-based)

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_INVALID_INDEX – if src is invalid.

• GrB_NULL_POINTER – if both level and parent are NULL, or if G is NULL.

• LAGRAPH_INVALID_GRAPH – Graph is invalid (LAGraph_CheckGraph failed).

int LAGr_ConnectedComponents(GrB_Vector *component, const LAGraph_Graph G, char *msg)
LAGr_ConnectedComponents: connected components of an undirected graph. This is an Advanced algorithm
(G->is_symmetric_structure must be known).

Parameters

• component – [out] component(i)=s if node i is in the component whose representative node
is s. If node i has no edges, it is placed in its own component, and thus the component vector
is always dense.

• G – [in] input graph to find the components for. The graph must be undirected, or G-
>is_symmetric_structure must be true.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G or component are NULL.

• LAGRAPH_INVALID_GRAPH – Graph is invalid (LAGraph_CheckGraph failed).

• LAGRAPH_SYMMETRIC_STRUCTURE_REQUIRED – if G is directed with an un-
symmetric G->A matrix.

4.2. Advanced 23

LAGraph

int LAGr_SingleSourceShortestPath(GrB_Vector *path_length, const LAGraph_Graph G, GrB_Index src,
GrB_Scalar Delta, char *msg)

LAGr_SingleSourceShortestPath: single-source shortest paths. This is an Advanced algorithm (G->emin
is required for best performance). The graph G must have an adjacency matrix of type GrB_INT32,
GrB_INT64, GrB_UINT32, GrB_UINT64, GrB_FP32, or GrB_FP64. If G->A has any other type,
GrB_NOT_IMPLEMENTED is returned.

Parameters

• path_length – [out] path_length (i) is the length of the shortest path from the source node
to node i. The path_length vector is dense. If node (i) is not reachable from the src node,
then path_length (i) is set to INFINITY for GrB_FP32 and FP32, or the maximum integer
for GrB_INT32, INT64, UINT32, or UINT64.

• G – [in] input graph.

• src – [in] source node.

• Delta – [in] for delta stepping.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G or path_length are NULL.

• GrB_INVALID_INDEX – if src is invalid.

• GrB_EMPTY_OBJECT – if Delta does not contain a value.

• GrB_NOT_IMPLEMENTED – if the type is not supported.

• LAGRAPH_INVALID_GRAPH – Graph is invalid (LAGraph_CheckGraph failed).

int LAGr_Betweenness(GrB_Vector *centrality, const LAGraph_Graph G, const GrB_Index *sources, int32_t ns,
char *msg)

LAGr_Betweenness: betweeness centrality metric. This methods computes an approximation of the betweeness-
centrality metric of all nodes in the graph. Only a few given source nodes are used for the approximation. This
is an Advanced algorithm (G->AT is required).

Parameters

• centrality – [out] centrality(i) is the metric for node i.

• G – [in] input graph.

• sources – [in] source vertices to compute shortest paths, size ns

• ns – [in] number of source vertices.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G, centrality, and/our sources are NULL.

• GrB_INVALID_INDEX – if any source node is invalid.

• LAGRAPH_INVALID_GRAPH – Graph is invalid (LAGraph_CheckGraph failed).

24 Chapter 4. Algorithms

LAGraph

• LAGRAPH_NOT_CACHED – if G->AT is required but not present.

int LAGr_PageRank(GrB_Vector *centrality, int *iters, const LAGraph_Graph G, float damping, float tol, int
itermax, char *msg)

LAGr_PageRank: computes the standard PageRank of a directed graph G. Sinks (nodes with no out-going edges)
are properly handled. This method should be used for production, not for the GAP benchmark. This is an
Advanced algorithm (G->AT and G->out_degree are required).

Parameters

• centrality – [out] centrality(i) is the PageRank of node i.

• iters – [out] number of iterations taken.

• G – [in] input graph.

• damping – [in] damping factor (typically 0.85).

• tol – [in] stopping tolerance (typically 1e-4).

• itermax – [in] maximum number of iterations (typically 100).

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G, centrality, and/our iters are NULL.

• LAGRAPH_NOT_CACHED – if G->AT is required but not present, or if G->out_degree
is not present.

• LAGRAPH_INVALID_GRAPH – Graph is invalid (LAGraph_CheckGraph failed).

int LAGr_TriangleCount(uint64_t *ntriangles, const LAGraph_Graph G, LAGr_TriangleCount_Method *method,
LAGr_TriangleCount_Presort *presort, char *msg)

LAGr_TriangleCount: count the triangles in a graph (advanced API).

Parameters

• ntriangles – [out] the number of triangles in G.

• G – [in] The graph, which must be undirected or have G->is_symmetric_structure true,
with no self loops. G->nself_edges, G->out_degree, and G->is_symmetric_structure are
required.

• method – [inout] specifies which algorithm to use, and returns the method chosen.
If NULL, the AutoMethod is used, and the method is not reported. Also see the
LAGr_TriangleCount_Method enum description.

• presort – [inout] controls the presort of the graph, and returns the presort chosen. If NULL,
the AutoSort is used, and the presort method is not reported. Also see the description of the
LAGr_TriangleCount_Presort enum.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G or ntriangles are NULL.

4.2. Advanced 25

LAGraph

• LAGRAPH_INVALID_GRAPH – Graph is invalid (LAGraph_CheckGraph failed).

• LAGRAPH_NO_SELF_EDGES_ALLOWED – if G has any self-edges, or if G-
>nself_edges is not computed.

• LAGRAPH_SYMMETRIC_STRUCTURE_REQUIRED – if G is directed with an un-
symmetric G->A matrix.

• LAGRAPH_NOT_CACHED – if G->out_degree is not present in G.

• GrB_INVALID_VALUE – method or presort are invalid.

enum LAGr_TriangleCount_Method
LAGr_TriangleCount_Method: an enum to select the method used to count the number of triangles.

Values:

enumerator LAGr_TriangleCount_AutoMethod
auto selection of method

enumerator LAGr_TriangleCount_Burkhardt
sum (sum ((A^2) .* A)) / 6

enumerator LAGr_TriangleCount_Cohen
sum (sum ((L * U) .* A)) / 2

enumerator LAGr_TriangleCount_Sandia_LL
sum (sum ((L * L) .* L))

enumerator LAGr_TriangleCount_Sandia_UU
sum (sum ((U * U) .* U))

enumerator LAGr_TriangleCount_Sandia_LUT
sum (sum ((L * U’) .* L))

enumerator LAGr_TriangleCount_Sandia_ULT
sum (sum ((U * L’) .* U))

enum LAGr_TriangleCount_Presort
LAGr_TriangleCount_Presort: an enum to control if/how the matrix is sorted prior to counting triangles.

Values:

enumerator LAGr_TriangleCount_NoSort
no sort

enumerator LAGr_TriangleCount_Ascending
sort by degree, ascending.

enumerator LAGr_TriangleCount_Descending
sort by degree, descending.

enumerator LAGr_TriangleCount_AutoSort
auto selection of presort: No presort is done for the Burkhardt or Cohen methods, and no sort is done for the
Sandia_* methods if the sampled mean out-degree is <= 4 * the sample median out-degree. Otherwise: sort

26 Chapter 4. Algorithms

LAGraph

in ascending order for Sandia_LL and Sandia_LUT, descending ordering for Sandia_UU and Sandia_ULT.
On output, presort is modified to reflect the sorting method used (NoSort, Ascending, or Descending).

4.2. Advanced 27

LAGraph

28 Chapter 4. Algorithms

CHAPTER

FIVE

UTILITY FUNCTIONS

5.1 Input/Output Functions

int LAGraph_MMRead(GrB_Matrix *A, FILE *f, char *msg)
LAGraph_MMRead: reads a matrix in MatrixMarket format. The file format used here is compatible with
all variations of the Matrix Market “coordinate” and “array” format (http://www.nist.gov/MatrixMarket), for
sparse and dense matrices respectively. The format is fully described in LAGraph/Doc/MatrixMarket.pdf, and
summarized here (with extensions for LAGraph).

5.1.1 First Line

The first line of the file starts with %%MatrixMarket, with the following format:

%%MatrixMarket matrix <fmt> <type> <storage>

<fmt> One of:

• coordinate : sparse matrix in triplet form

• array : dense matrix in column-major form

Both formats are returned as a GrB_Matrix.

If not present, defaults to coordinate.

<type> One of:

• real : returns as GrB_FP64

• integer : returns as GrB_INT64

• pattern : returns as GrB_BOOL

• complex : currently not supported

The return type can be modified by the %%GraphBLAS structured comment described below.

If not present, defaults to real.

<storage> One of:

• general the matrix has no symmetry properties (or at least none that were exploited when the file was
created).

29

http://www.nist.gov/MatrixMarket
https://github.com/GraphBLAS/LAGraph/blob/stable/papers/MatrixMarket.pdf

LAGraph

• Hermitian square complex matrix with A(i,j) = conj (A(j,i)). All entries on the diagonal are real.
Each off-diagonal entry in the file creates two entries in the GrB_Matrix that is returned.

• symmetric A(i,j) == A(j,i). Only entries on or below the diagonal appear in the file. Each off-diagonal
entry in the file creates two entries in the GrB_Matrix that is returned.

• skew-symmetric A(i,j) == -A(i,j). There are no entries on the diagonal. Only entries below the
diagonal appear in the file. Each off-diagonal entry in the file creates two entries in the GrB_Matrix
that is returned.

The Matrix Market format is case-insensitive, so “hermitian” and “Hermitian” are treated the same.

If not present, defaults to general.

Not all combinations are permitted. Only the following are meaningful:

(1) (coordinate or array) x (real, integer, or complex) x (general, symmetric, or skew-symmetric)

(2) (coordinate or array) x (complex) x (Hermitian)

(3) (coodinate) x (pattern) x (general or symmetric)

5.1.2 Second Line

The second line is an optional extension to the Matrix Market format:

%%GraphBLAS type <entrytype>

<entrytype> One of the 11 built-in types (bool, int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, uint32_t,
uint64_t, float, or double.

If this second line is included, it overrides the default GraphBLAS types for the Matrix Market <type> on line
one of the file: real, pattern, and integer. The Matrix Market complex <type> is not yet supported.

5.1.3 Other Lines

Any other lines starting with “%” are treated as comments, and are ignored. Comments may be interspersed
throughout the file. Blank lines are ignored. The Matrix Market header is optional in this routine (it is not
optional in the Matrix Market format). The remaining lines are space delimited, and free format (one or more
spaces can appear, and each field has arbitrary width).

5.1.4 Coordinate Format

For coordinate format, the first non-comment line must appear, and it must contain three integers:

nrows ncols nvals

For example, a 5-by-12 matrix with 42 entries would have:

5 12 42

Each of the remaining lines defines one entry. The order is arbitrary. If the Matrix Market <type> is real or
integer, each line contains three numbers: row index, column index, and value. For example, if A(3,4) is equal
to 5.77, a line:

30 Chapter 5. Utility Functions

LAGraph

3 4 5.77

would appear in the file. The indices in the Matrix Market are 1-based, so this entry becomes A(2,3) in the
GrB_Matrix returned to the caller. If the <type> is pattern, then only the row and column index appears. If
<type> is complex, four values appear. If A(8,4) has a real part of 6.2 and an imaginary part of -9.3, then the
line is:

8 4 6.2 -9.3

and since the file is 1-based but a GraphBLAS matrix is always 0-based, one is subtracted from the row and
column indices in the file, so this entry becomes A(7,3). Note however that LAGraph does not yet support
complex types.

5.1.5 Array Format

For array format, the first non-comment line must appear, and it must contain just two integers:

nrows ncols

A 5-by-12 matrix would have this as the first non-comment line after the header:

5 12

Each of the remaining lines defines one entry, in column major order. If the <type> is real or integer, this is the
value of the entry. An entry if <type> of complex consists of two values, the real and imaginary part (not yet
supported). The <type> cannot be pattern in this case.

5.1.6 Infinity & Not-A-Number

For both coordinate and array formats, real and complex values may use the terms INF, +INF, -INF, and NAN to
represent floating-point infinity and NaN values, in either upper or lower case.

According to the Matrix Market format, entries are always listed in column-major order. This rule is follwed by
LAGraph_MMWrite . However, LAGraph_MMRead can read the entries in any order.

Parameters

• A – [out] handle of the matrix to create.

• f – [inout] handle to an open file to read from.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if A or f are NULL.

• LAGRAPH_IO_ERROR – if the file could not be read or contains a matrix with an invalid
Matrix Market format.

• GrB_NOT_IMPLEMENTED – if the type is not supported. Complex types (GxB_FC32
and GxB_FC64 in SuiteSparse:GraphBLAS) are not yet supported.

5.1. Input/Output Functions 31

LAGraph

int LAGraph_MMWrite(GrB_Matrix A, FILE *f, FILE *fcomments, char *msg)
LAGraph_MMWrite: writes a matrix in MatrixMarket format. Refer to LAGraph_MMRead for a description of
the output file format. The MatrixMarket header line always appears, followed by the second line containing the
GraphBLAS type:

%%GraphBLAS type <entrytype>

Parameters

• A – [in] matrix to write.

• f – [inout] handle to an open file to write to.

• fcomments – [in] optional handle to an open file containing comments; may be NULL.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if A or f are NULL.

• LAGRAPH_IO_ERROR – if the file could not be written to.

• GrB_NOT_IMPLEMENTED – if the type is not supported. Complex types (GxB_FC32
and GxB_FC64 in SuiteSparse:GraphBLAS) are not yet supported.

double LAGraph_WallClockTime(void)
LAGraph_WallClockTime returns the current wall clock time. Normally, this is simply a wrapper for
omp_get_wtime, if OpenMP is in use. Otherwise, an OS-specific timing function is called. Note that unlike
all other LAGraph functions, this function does not return an error condition, nor does it have a msg string
parameter. Instead, it returns the current wall clock time (in seconds) since some fixed point in the past.

Returns the current wall clock time.

5.2 Matrix Structure Functions

int LAGraph_Matrix_Structure(GrB_Matrix *C, GrB_Matrix A, char *msg)
LAGraph_Matrix_Structure: returns the sparsity structure of a matrix A as a boolean (GrB_BOOL) matrix C.
If A(i,j) appears in the sparsity structure of A, then C(i,j) is set to true. The sparsity structure of A and C are
identical.

Parameters

• C – [out] A boolean matrix with same structure of A, with C(i,j) true if A(i,j) appears in the
sparsity structure of A.

• A – [in] matrix to compute the structure for.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if A or C are NULL.

32 Chapter 5. Utility Functions

LAGraph

int LAGraph_Vector_Structure(GrB_Vector *w, GrB_Vector u, char *msg)
LAGraph_Vector_Structure: returns the sparsity structure of a vector u as a boolean (GrB_BOOL) vector w. If
u(i) appears in the sparsity structure of u, then w(i) is set to true. The sparsity structure of u and w are identical.

Parameters

• w – [out] A boolean vector with same structure of u, with w(i) true if u(i,j) appears in the
sparsity structure of u.

• u – [in] vector to compute the structure for.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if w or u are NULL.

5.3 Matrix Comparison Functions

int LAGraph_Matrix_IsEqual(bool *result, const GrB_Matrix A, const GrB_Matrix B, char *msg)
LAGraph_Matrix_IsEqual compares two matrices for exact equality. If the two matrices have different data types,
the result is always false (no typecasting is performed). Only the 11 built-in GrB* types are supported. If both
A and B are NULL, the return value is true. If A and/or B are floating-point types and contain NaN’s, result is
false.

Parameters

• result – [out] true if A and B are exactly equal, false otherwise.

• A – [in] matrix to compare.

• B – [in] matrix to compare.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if result is NULL.

• GrB_NOT_IMPLEMENTED – if A or B has a user-defined type.

int LAGraph_Matrix_IsEqualOp(bool *result, const GrB_Matrix A, const GrB_Matrix B, const GrB_BinaryOp
op, char *msg)

LAGraph_Matrix_IsEqualOp compares two matrices using the given binary operator. The op may be built-in or
user-defined. The two matrices may have different types and still be determined to be equal. To be equal, two
matrices must have the same sparsity structure, and op(aij,bij) must return true for all pairs of entries aij and bij
that appear in the structure of both A and B. The matrices A and/or B can have any type, as long as they are valid
inputs to the op. If both A and B are NULL, the return value is true.

Parameters

• result – [out] true if A and B are equal (per the op), false otherwise.

• A – [in] matrix to compare.

• B – [in] matrix to compare.

5.3. Matrix Comparison Functions 33

LAGraph

• op – [in] operator for the comparison.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if result or op are NULL.

int LAGraph_Vector_IsEqual(bool *result, const GrB_Vector u, const GrB_Vector v, char *msg)
LAGraph_Vector_IsEqual compares two vectors for exact equality. If the two vectors have different data types,
the result is always false (no typecasting is performed). Only the 11 built-in GrB* types are supported. If both u
and v are NULL, the return value is true. If u and/or v are floating-point types and contain NaN’s, result is false.

Parameters

• result – [out] true if u and v are exactly equal, false otherwise.

• u – [in] vector to compare.

• v – [in] vector to compare.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if result is NULL.

• GrB_NOT_IMPLEMENTED – if u or v has a user-defined type.

int LAGraph_Vector_IsEqualOp(bool *result, const GrB_Vector u, const GrB_Vector v, const GrB_BinaryOp op,
char *msg)

LAGraph_Vector_IsEqualOp compares two vectors using the given binary operator. The op may be built-in or
user-defined. The two vectors may have different types and still be determined to be equal. To be equal, two
vectors must have the same sparsity structure, and op(ui,vi) must return true for all pairs of entries ui and vi that
appear in the structure of both u and v. The vectors u and/or v can have any type, as long as they are valid inputs
to the op. If both u and v are NULL, the return value is true.

Parameters

• result – [out] true if u and v are equal (per the op), false otherwise.

• u – [in] vector to compare.

• v – [in] vector to compare.

• op – [in] operator for the comparison.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if result or op are NULL.

34 Chapter 5. Utility Functions

LAGraph

5.4 Introspecting Types

int LAGraph_NameOfType(char *name, GrB_Type type, char *msg)
LAGraph_NameOfType returns the name of a GraphBLAS type as a string. The names for the 11 built-in types
(GrB_BOOL, GrB_INT8, etc) correspond to the names of the corresponding C types (bool, int8_t, etc).

Parameters

• name – [out] name of the type: user provided array of size at least LA-
GRAPH_MAX_NAME_LEN.

• type – [in] GraphBLAS type to find the name of.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if name or type are NULL.

int LAGraph_TypeFromName(GrB_Type *type, char *name, char *msg)
LAGraph_TypeFromName: returns the GrB_Type corresponding to its name. That is, given the string “bool”,
this method returns GrB_BOOL.

Parameters

• type – [out] GraphBLAS type corresponding to the given name string.

• name – [in] name of the type: a null-terminated string.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if name or type are NULL.

int LAGraph_SizeOfType(size_t *size, GrB_Type type, char *msg)
LAGraph_SizeOfType: returns sizeof(. . .) of a GraphBLAS GrB_Type. For example, if given the GrB_Type of
GrB_FP64, the value sizeof(double) is returned.

Parameters

• size – [out] size of the type

• type – [in] GraphBLAS type to find the size of.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if size or type are NULL.

int LAGraph_Matrix_TypeName(char *name, GrB_Matrix A, char *msg)
LAGraph_Matrix_TypeName: returns the name of the GrB_Type of a GrB_Matrix.

Parameters

5.4. Introspecting Types 35

LAGraph

• name – [out] name of the type of the matrix: user provided array of size at least LA-
GRAPH_MAX_NAME_LEN.

• A – [in] GraphBLAS matrix to find the type name of.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if name or A are NULL.

int LAGraph_Vector_TypeName(char *name, GrB_Vector v, char *msg)
LAGraph_Vector_TypeName: returns the name of the GrB_Type of a GrB_Vector.

Parameters

• name – [out] name of the type of the vector: user provided array of size at least LA-
GRAPH_MAX_NAME_LEN.

• v – [in] GraphBLAS vector to find the type name of.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if name or v are NULL.

int LAGraph_Scalar_TypeName(char *name, GrB_Scalar s, char *msg)
LAGraph_Scalar_TypeName: returns the name of the GrB_Type of a GrB_Scalar.

Parameters

• name – [out] name of the type of the scalar: user provided array of size at least LA-
GRAPH_MAX_NAME_LEN.

• s – [in] GraphBLAS scalar to find the type name of.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if name or s are NULL.

5.5 Printing

int LAGraph_Graph_Print(const LAGraph_Graph G, LAGraph_PrintLevel pr, FILE *f, char *msg)
LAGraph_Graph_Print: prints the contents of a graph to a file in a human- readable form. This method is not
meant for saving a graph to a file; see LAGraph_MMWrite for that method.

Parameters

• G – [in] graph to display.

• pr – [in] print level.

36 Chapter 5. Utility Functions

LAGraph

• f – [inout] handle to an open file to write to.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if G or f are NULL.

• LAGRAPH_INVALID_GRAPH – if G is invalid (LAGraph_CheckGraph failed).

• GrB_NOT_IMPLEMENTED – if G->A has a user-defined type.

• LAGRAPH_IO_ERROR – if the file could not be written to.

int LAGraph_Matrix_Print(const GrB_Matrix A, LAGraph_PrintLevel pr, FILE *f, char *msg)
LAGraph_Matrix_Print displays a matrix in a human-readable form. This method is not meant for saving a
GrB_Matrix to a file; see LAGraph_MMWrite for that method.

Parameters

• A – [in] matrix to display.

• pr – [in] print level.

• f – [inout] handle to an open file to write to.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if A or f are NULL.

• GrB_NOT_IMPLEMENTED – if A has a user-defined type.

• LAGRAPH_IO_ERROR – if the file could not be written to.

int LAGraph_Vector_Print(const GrB_Vector v, LAGraph_PrintLevel pr, FILE *f, char *msg)
LAGraph_Vector_Print displays a vector in a human-readable form. This method is not meant for saving a
GrB_Vector to a file. To perform that operation, copy the GrB_Vector into an n-by-1 GrB_Matrix and use
LAGraph_MMWrite .

Parameters

• v – [in] vector to display.

• pr – [in] print level.

• f – [inout] handle to an open file to write to.

• msg – [inout] any error messages.

Returns any GraphBLAS errors that may have been encountered.

Returns

• GrB_SUCCESS – if successful.

• GrB_NULL_POINTER – if v or f are NULL.

• GrB_NOT_IMPLEMENTED – if v has a user-defined type.

• LAGRAPH_IO_ERROR – if the file could not be written to.

5.5. Printing 37

LAGraph

enum LAGraph_PrintLevel
LAGraph_PrintLevel: an enum to control how much to print in LAGraph_*_Print methods.

Values:

enumerator LAGraph_SILENT
nothing is printed.

enumerator LAGraph_SUMMARY
print a terse summary.

enumerator LAGraph_SHORT
short description, about 30 entries.

enumerator LAGraph_COMPLETE
print the entire contents of the object.

enumerator LAGraph_SHORT_VERBOSE
short, but with “%.15g” for doubles.

enumerator LAGraph_COMPLETE_VERBOSE
complete, but “%.15g” for doubles.

5.6 Pre-defined semirings

LAGraph adds the following pre-defined semirings. They are created by LAGr_Init or LAGraph_Init, and freed by
LAGraph_Finalize.

• LAGraph_plus_first_T: Uses the GrB_PLUS_MONOID_T monoid and the corresponding GrB_FIRST_T
multiplicative operator:

LAGraph_plus_first_int8
LAGraph_plus_first_int16
LAGraph_plus_first_int32
LAGraph_plus_first_int64
LAGraph_plus_first_uint8
LAGraph_plus_first_uint16
LAGraph_plus_first_uint32
LAGraph_plus_first_uint64
LAGraph_plus_first_fp32
LAGraph_plus_first_fp64

• LAGraph_plus_second_T Uses the GrB_PLUS_MONOID_T monoid and the corresponding
GrB_SECOND_T multiplicative operator:

LAGraph_plus_second_int8
LAGraph_plus_second_int16
LAGraph_plus_second_int32
LAGraph_plus_second_int64
LAGraph_plus_second_uint8
LAGraph_plus_second_uint16

(continues on next page)

38 Chapter 5. Utility Functions

LAGraph

(continued from previous page)

LAGraph_plus_second_uint32
LAGraph_plus_second_uint64
LAGraph_plus_second_fp32
LAGraph_plus_second_fp64

• LAGraph_plus_one_T: Uses the GrB_PLUS_MONOID_T monoid and the corresponding GrB_ONEB_T mul-
tiplicative operator:

LAGraph_plus_one_int8
LAGraph_plus_one_int16
LAGraph_plus_one_int32
LAGraph_plus_one_int64
LAGraph_plus_one_uint8
LAGraph_plus_one_uint16
LAGraph_plus_one_uint32
LAGraph_plus_one_uint64
LAGraph_plus_one_fp32
LAGraph_plus_one_fp64

• LAGraph_any_one_T: Uses the GrB_MIN_MONOID_T for non-boolean types or
GrB_LOR_MONOID_BOOL for boolean, and the GrB_ONEB_T multiplicative op.

These semirings are very useful for unweighted graphs, or for algorithms that operate only on the sparsity
structure of unweighted graphs:

LAGraph_any_one_bool
LAGraph_any_one_int8
LAGraph_any_one_int16
LAGraph_any_one_int32
LAGraph_any_one_int64
LAGraph_any_one_uint8
LAGraph_any_one_uint16
LAGraph_any_one_uint32
LAGraph_any_one_uint64
LAGraph_any_one_fp32
LAGraph_any_one_fp64

5.6. Pre-defined semirings 39

LAGraph

40 Chapter 5. Utility Functions

CHAPTER

SIX

EXPERIMENTAL ALGORITHMS

LAGraph includes a set of experimental algorithms and utilities, in the LAGraph/experimental folder. The include file
appears in LAGraph/include/LAGraphX.h. These methods are in various states of development, and their C APIs are
not guaranteed to be stable. They are not guaranteed to have all of their performance issues resolved. However, they
have been tested, debugged, and mostly benchmarked.

New algorithms and utilities can be contributed by placing them in the experimental/algorithm or experimental/utility
folder. Tests for new algorithms or utilities should be placed in the experimental/test folder, and benchmark programs
that exercise their performance (and typically check results) should be placed in the experimental/benchmark folder.

An simple example algorithm and its test and benchmark is provided, which serves as a template for creating new
algorithms:

• algorithm/LAGraph_HelloWorld.c a simple “algorithm” that merely creates a copy of the G->A adjacency
matrix.

• benchmark/helloworld2_demo.c a benchmark program illustrates how to write a main program that loads in a
graph, calls an algorithm, and checks and prints the result. If any file appears in the benchmark folder with
a name ending in _demo.c, then the CMake script will find it and compile it.

• benchmark/helloworld_demo.c another benchmark program. This one relies on internal utilities. See the file
for details.

• test/test_HelloWorld.c a test program, using the acutest test suite. If any file appears in experimenta/test with
the prefix test_*, the CMake script will compile it and include it in the “make test” target.

41

https://github.com/GraphBLAS/LAGraph/blob/stable/experimental/algorithm/LAGraph_HelloWorld.c
https://github.com/GraphBLAS/LAGraph/blob/stable/experimental/benchmark/helloworld2_demo.c
https://github.com/GraphBLAS/LAGraph/blob/stable/experimental/benchmark/helloworld_demo.c
https://github.com/GraphBLAS/LAGraph/blob/stable/experimental/test/test_HelloWorld.c

LAGraph

42 Chapter 6. Experimental Algorithms

CHAPTER

SEVEN

INSTALLATION

LAGraph is available at https://github.com/GraphBLAS/LAGraph. Be sure to check out the default stable branch,
or use one of the stable releases. LAGraph requires SuiteSparse:GraphBLAS, available at https://github.com/
DrTimothyAldenDavis/GraphBLAS.

To compile and install LAGraph, you must first compile and install a recent version of SuiteSparse:GraphBLAS. Place
LAGraph and GraphBLAS in the same folder, side-by-side. Compile and (optionally) install SuiteSparse:GraphBLAS
(see the documentation in SuiteSparse:GraphBLAS for details). At least on Linux or Mac, if GraphBLAS is not installed
system-wide, LAGraph can find it if GraphBLAS appears in the same folder as LAGraph, so you do not need system
privileges to use GraphBLAS.

LAGraph includes a CMakeLists.txt file that does the bulk of the work to build the package. Also included is a very
simple Makefile that simplifies the use of make for Linux and MacOS. In Linux or Mac, you can use it to run these
commands:

cd LAGraph
make
make test

If you have system admin privileges, you can then install LAGraph:

sudo make install

On Windows, the CMakeLists.txt file can be imported into MS Visual Studio, and LAGraph can be built directly from
there.

43

https://github.com/GraphBLAS/LAGraph
https://github.com/DrTimothyAldenDavis/GraphBLAS
https://github.com/DrTimothyAldenDavis/GraphBLAS

LAGraph

44 Chapter 7. Installation

CHAPTER

EIGHT

ACKNOWLEDGEMENTS

This work is funded in part by:

1. The United States Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering Institute, a federally funded research and development center.
[DM22-0790]

2. The United States Department of Defense under Contract No. FA8650-18-2-7835 and HR0011-18-3-0007

3. NVIDIA, Intel, MIT Lincoln Laboratory, MathWorks, IBM, and Julia Computing.

4. The National Science Foundation (1514406, OAC-1740333, CCF-1629657).

5. The United States Department of Energy, Office of Science, ASCR Contract No. DE-AC02-05CH11231.

45

LAGraph

46 Chapter 8. Acknowledgements

CHAPTER

NINE

REFERENCES

• Graph algorithms in the language of linear algebra, Jeremy Kepner and John Gilbert, SIAM, 2011.

• Mathematical Foundations of the GraphBLAS, Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluc, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, Scott
McMillan, Jose Moreira, John D. Owens, Carl Yang, Marcin Zalewski, Timothy Mattson, IEEE High Perfor-
mance Extreme Computing, 2016

• Design of the GraphBLAS API for C, Aydin Buluc, Tim Mattson, Scott McMillan, Jose Moreira, and Carl Yang
Graph Algorithms Building Blocks workshop at IPDPS, 2017

• LAGraph: A Community Effort to Collect Graph Algorithms Built on Top of the GraphBLAS T Mattson, TA
Davis, M Kumar, A Buluç, S McMillan, J Moreira, C Yang GrAPL workshop at IPDPS 2019. https://people.
eecs.berkeley.edu/~aydin/LAGraph19.pdf

• LAGraph: Linear Algebra, Network Analysis Libraries, and the Study of Graph Algorithms, Gabor Szarnyas,
David A. Bader, Timothy A. Davis, James Kitchen, Timothy G. Mattson, Scott McMillan, Erik Welch, GrAPL
workshop at IPDPS 2021

• Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algorithms in the Language of Sparse Linear Algebra Timo-
thy A. Davis, ACM Trans. Math. Softw., vol 45, no 4, Dec. 2019. https://doi.org/10.1145/3322125

• Hoke, Tanner (2022). An Implementation of Fast Graphlet Transform in GraphBLAS. Undergraduate Research
Scholars Program, Texas A&M University. https://hdl.handle.net/1969.1/196609

• Konduri, Pranav S (2022). An Implementation of the Parallel K-core Decomposition Algorithm in GraphBLAS.
Undergraduate Research Scholars Program, Texas A&M University. https://hdl.handle.net/1969.1/196516

• Waheed, Abeer (2022). TriPoll in GraphBLAS. Undergraduate Research Scholars Program, Texas A&M Uni-
versity. https://hdl.handle.net/1969.1/196576

47

https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://doi.org/10.1145/3322125
https://hdl.handle.net/1969.1/196609
https://hdl.handle.net/1969.1/196516
https://hdl.handle.net/1969.1/196576

LAGraph

48 Chapter 9. References

CHAPTER

TEN

EXAMPLE USAGE

Note that this simple example does not check any error conditions.

#include "LAGraph.h"

int main (void)
{

// initialize LAGraph
char msg [LAGRAPH_MSG_LEN] ;
LAGraph_Init (msg) ;
GrB_Matrix A = NULL ;
GrB_Vector centrality = NULL ;
LAGraph_Graph G = NULL ;

// read a Matrix Market file from stdin and create a graph
LAGraph_MMRead (&A, stdin, msg) ;
LAGraph_New (&G, &A, LAGraph_ADJACENCY_UNDIRECTED, msg) ;

// compute the out-degree of every node
LAGraph_Cached_OutDegree (G, msg) ;

// compute the pagerank
int niters = 0 ;
LAGr_PageRank (¢rality, &niters, G, 0.85, 1e-4, 100, msg) ;

// print the result
LAGraph_Vector_Print (centrality, LAGraph_COMPLETE, stdout, msg) ;

// free the graph, the pagerank, and finish LAGraph
LAGraph_Delete (&G, msg) ;
GrB_free (¢rality) ;
LAGraph_Finalize (msg) ;

}

genindex

49

LAGraph

50 Chapter 10. Example Usage

INDEX

G
GRB_TRY (C macro), 10

L
LAGr_Betweenness (C++ function), 24
LAGr_BreadthFirstSearch (C++ function), 23
LAGr_ConnectedComponents (C++ function), 23
LAGr_Init (C++ function), 5
LAGr_PageRank (C++ function), 25
LAGr_SampleDegree (C++ function), 22
LAGr_SingleSourceShortestPath (C++ function), 23
LAGr_SortByDegree (C++ function), 22
LAGr_TriangleCount (C++ function), 25
LAGr_TriangleCount_Method (C++ enum), 26
LAGr_TriangleCount_Method::LAGr_TriangleCount_AutoMethod

(C++ enumerator), 26
LAGr_TriangleCount_Method::LAGr_TriangleCount_Burkhardt

(C++ enumerator), 26
LAGr_TriangleCount_Method::LAGr_TriangleCount_Cohen

(C++ enumerator), 26
LAGr_TriangleCount_Method::LAGr_TriangleCount_Sandia_LL

(C++ enumerator), 26
LAGr_TriangleCount_Method::LAGr_TriangleCount_Sandia_LUT

(C++ enumerator), 26
LAGr_TriangleCount_Method::LAGr_TriangleCount_Sandia_ULT

(C++ enumerator), 26
LAGr_TriangleCount_Method::LAGr_TriangleCount_Sandia_UU

(C++ enumerator), 26
LAGr_TriangleCount_Presort (C++ enum), 26
LAGr_TriangleCount_Presort::LAGr_TriangleCount_Ascending

(C++ enumerator), 26
LAGr_TriangleCount_Presort::LAGr_TriangleCount_AutoSort

(C++ enumerator), 26
LAGr_TriangleCount_Presort::LAGr_TriangleCount_Descending

(C++ enumerator), 26
LAGr_TriangleCount_Presort::LAGr_TriangleCount_NoSort

(C++ enumerator), 26
LAGraph_Boolean (C++ enum), 14
LAGraph_Boolean::LAGraph_BOOLEAN_UNKNOWN

(C++ enumerator), 14
LAGraph_Boolean::LAGraph_FALSE (C++ enumera-

tor), 14

LAGraph_Boolean::LAGraph_TRUE (C++ enumera-
tor), 14

LAGraph_Cached_AT (C++ function), 16
LAGraph_Cached_EMax (C++ function), 18
LAGraph_Cached_EMin (C++ function), 18
LAGraph_Cached_InDegree (C++ function), 17
LAGraph_Cached_IsSymmetricStructure (C++

function), 17
LAGraph_Cached_NSelfEdges (C++ function), 18
LAGraph_Cached_OutDegree (C++ function), 17
LAGraph_CheckGraph (C++ function), 19
LAGraph_Delete (C++ function), 16
LAGraph_DeleteCached (C++ function), 16
LAGraph_DeleteSelfEdges (C++ function), 19
LAGraph_Finalize (C++ function), 6
LAGraph_GetNumThreads (C++ function), 6
LAGraph_Graph (C++ type), 13
LAGraph_Graph_Print (C++ function), 36
LAGraph_Graph_struct (C++ struct), 13
LAGraph_Graph_struct::A (C++ member), 13
LAGraph_Graph_struct::AT (C++ member), 13
LAGraph_Graph_struct::emax (C++ member), 14
LAGraph_Graph_struct::emax_state (C++ mem-

ber), 14
LAGraph_Graph_struct::emin (C++ member), 14
LAGraph_Graph_struct::emin_state (C++ mem-

ber), 14
LAGraph_Graph_struct::in_degree (C++ member),

14
LAGraph_Graph_struct::is_symmetric_structure

(C++ member), 14
LAGraph_Graph_struct::kind (C++ member), 13
LAGraph_Graph_struct::nself_edges (C++ mem-

ber), 14
LAGraph_Graph_struct::out_degree (C++ mem-

ber), 13
LAGraph_Init (C++ function), 5
LAGraph_Kind (C++ enum), 15
LAGraph_Kind::LAGraph_ADJACENCY_DIRECTED

(C++ enumerator), 15
LAGraph_Kind::LAGraph_ADJACENCY_UNDIRECTED

(C++ enumerator), 15

51

LAGraph

LAGraph_Kind::LAGraph_KIND_UNKNOWN (C++ enu-
merator), 15

LAGraph_Matrix_IsEqual (C++ function), 33
LAGraph_Matrix_IsEqualOp (C++ function), 33
LAGraph_Matrix_Print (C++ function), 37
LAGraph_Matrix_Structure (C++ function), 32
LAGraph_Matrix_TypeName (C++ function), 35
LAGraph_MMRead (C++ function), 29
LAGraph_MMWrite (C++ function), 31
LAGRAPH_MSG_LEN (C macro), 8
LAGraph_NameOfType (C++ function), 35
LAGraph_New (C++ function), 15
LAGraph_PrintLevel (C++ enum), 37
LAGraph_PrintLevel::LAGraph_COMPLETE (C++

enumerator), 38
LAGraph_PrintLevel::LAGraph_COMPLETE_VERBOSE

(C++ enumerator), 38
LAGraph_PrintLevel::LAGraph_SHORT (C++ enu-

merator), 38
LAGraph_PrintLevel::LAGraph_SHORT_VERBOSE

(C++ enumerator), 38
LAGraph_PrintLevel::LAGraph_SILENT (C++ enu-

merator), 38
LAGraph_PrintLevel::LAGraph_SUMMARY (C++ enu-

merator), 38
LAGRAPH_RETURN_VALUES (C macro), 7
LAGraph_Scalar_TypeName (C++ function), 36
LAGraph_SetNumThreads (C++ function), 7
LAGraph_SizeOfType (C++ function), 35
LAGraph_State (C++ enum), 14
LAGraph_State::LAGraph_BOUND (C++ enumerator),

15
LAGraph_State::LAGraph_STATE_UNKNOWN (C++

enumerator), 15
LAGraph_State::LAGraph_VALUE (C++ enumerator),

15
LAGraph_TriangleCount (C++ function), 21
LAGRAPH_TRY (C macro), 9
LAGraph_TypeFromName (C++ function), 35
LAGraph_Vector_IsEqual (C++ function), 34
LAGraph_Vector_IsEqualOp (C++ function), 34
LAGraph_Vector_Print (C++ function), 37
LAGraph_Vector_Structure (C++ function), 32
LAGraph_Vector_TypeName (C++ function), 36
LAGraph_Version (C++ function), 6
LAGraph_WallClockTime (C++ function), 32

52 Index

	Introduction
	LAGraph context and error handling
	LAGraph Context Functions
	Error handling

	The Graph Object
	Basic Graph Functions

	Algorithms
	Basic
	Advanced

	Utility Functions
	Input/Output Functions
	First Line
	Second Line
	Other Lines
	Coordinate Format
	Array Format
	Infinity & Not-A-Number

	Matrix Structure Functions
	Matrix Comparison Functions
	Introspecting Types
	Printing
	Pre-defined semirings

	Experimental Algorithms
	Installation
	Acknowledgements
	References
	Example Usage
	Index

